LXCat 3

A novel data platform for low temperature plasma physics

Daan Boer Jan van Dijk 2nd Workshop on FAIR Data in Plasma Science

LXCat ("elecscat") [1]

Electron (and ion) collisional processes in plasmas

- Cross sections
- Potentials
- Swarm parameters

[1] Carbone, E., Graef, W., Hagelaar, G., Boer, D., Hopkins, M. M., Stephens, J. C., Yee, B. T., Pancheshnyi, S., van Dijk, J., & Pitchford, L. (2021). Data Needs for Modeling Low-Temperature Non-Equilibrium Plasmas: The LXCat Project, History, Perspectives and a Tutorial. *Atoms*, 9(1), 16. https://doi.org/10.3390/atoms9010016

LXCat ("elecscat") [1]

Electron (and ion) collisional processes in plasmas

- Cross sections
- Potentials
- Swarm parameters

Statistics

- pprox 120 visitors/day
- pprox 30000 cross sections
- International

[1] Carbone, E., Graef, W., Hagelaar, G., Boer, D., Hopkins, M. M., Stephens, J. C., Yee, B. T., Pancheshnyi, S., van Dijk, J., & Pitchford, L. (2021). Data Needs for Modeling Low-Temperature Non-Equilibrium Plasmas: The LXCat Project, History, Perspectives and a Tutorial. *Atoms*, 9(1), 16. https://doi.org/10.3390/atoms9010016

LXCat ("elecscat")

Traditionally

- Self-consistent datasets ("mechanisms")
- Combination with two-term Boltzmann solver

LXCat ("elecscat")

Traditionally

- Self-consistent datasets ("mechanisms")
- Combination with two-term Boltzmann solver

More recently

- State-to-state data
- Request for more detailed annotations
- Request for "chemistries"

An Argon "mechanism"

Complete set

- Elastic (effective)
- Excitation
- Ionization
- (Attachment)

An Argon "mechanism"

Complete set

- Elastic (effective)
- Excitation
- Ionization
- (Attachment)

 $egin{aligned} \mathbf{e} + \mathbf{Ar} &
ightarrow \mathbf{e} + \mathbf{Ar} \ & \mathbf{e} + \mathbf{Ar} &
ightarrow \mathbf{e} + \mathbf{Ar}^* \ & \mathbf{e} + \mathbf{Ar} &
ightarrow \mathbf{2e} + \mathbf{Ar}^+ \end{aligned}$

[2] Yamabe, C., Buckman, S.J. & Phelps, A.V., 1983. Measurement of free-free emission from low-energyelectron collisions with Ar. Physical Review A, 27(3), pp.1345–1352. Available at: http://dx.doi.org/10.1103/PhysRevA.27.1345.

A Hydrogen state-to-state model

Excitation in molecules

- $\mathrm{e} + \mathrm{H}_2(\mathrm{X}^1\Sigma^+_\mathrm{g}, \nu=5)
 ightarrow \mathrm{e} + \mathrm{H}_2(\mathrm{B}^1\Sigma^+_\mathrm{u}, \nu=24)$
- $\mathrm{e} + \mathrm{H}_2(\mathrm{X}^1\Sigma^+_\mathrm{g},
 u=5)
 ightarrow \mathrm{e} + \mathrm{H}_2(\mathrm{j}^3\Delta_\mathrm{g},
 u=8)$

A lot more detailed

- Vibrationally resolved
- 341 states
- 4875 reactions

[3] Scarlett, L.H. et al., 2021. Complete collision data set for electrons scattering on molecular hydrogen and its isotopologues: I. Fully vibrationally-resolved electronic excitation of H2(X1Σg+). Atomic Data and Nuclear Data Tables, 137, p.101361. Available at: http://dx.doi.org/10.1016/j.adt.2020.101361.

Trouble...

Ground states

Ar BCI BCI2 BCI3 BF3 BeC C2 C2H2 C2H4 C2H6 C2OH6 C3 C3H4 C3H6 C3H8 C3N CCI2F2 CCI4 CF CF2 CF3 CF4 CH CH2 CH3 CH4 CHF3 CNH C0 C02 C0NH3 C0S CS CaF CI2 CU D2 DT F F2 F20 H H2 H20 H2S H4C HBr HCH0 HCN HCP HCI HD HT He Hg Kr Mg N N2 N20 NF3 NH3 N0 N02 Na Ne O 02 03 O- PH3 SF SF2 SF3 SF4 SF5 SF6 S02 Si2H6 Si(CH3)4 SiF2 SiH4 Si0 T2 Xe

State-specific and gas mixtures

 $Ar^{*} [Ar(3d'(3/2)2)] Ar(3d(5/2)2)] Ar(3d(5/2)3)] Ar(3d(1/2)0) [Ar(3d(1/2)1)] Ar(3d(3/2)1)] Ar(3d(3/2)2)] Ar(3d(5/2)2)] Ar(3d(5/2)3)] Ar(3d(7/2)3)] Ar(3d(7/2)4)] Ar(3d(7/2)4)] Ar(3d(1/2)1)] Ar(3d(3/2)1)] Ar(3d(3/2)1)] Ar(3d(5/2)2)] Ar(3d(5/2)3)] Ar(3d(7/2)4)] Ar(3d(7/2)4)] Ar(3d(1/2)1)] Ar(3d(3/2)1)] Ar(3d(3/2)1)] Ar(3d(5/2)3)] Ar(3d(7/2)3)] Ar(3d(7/2)4)] Ar(3d(1/2)1)] Ar(3d(3/2)1)] Ar(3d(3/2)2)] Ar(3d(5/2)3)] Ar(3d(7/2)3)] Ar(3d(7/2)4)] Ar(3d(1/2)1)] Ar(3d(3/2)1)] Ar(3d(3/2)2)] Ar(3d(5/2)3)] Ar(3d(7/2)3)] Ar(3d(7/2)4)] Ar(3d(7/2)4)] Ar(3d(1/2)1)] Ar(3d(3/2)1)] Ar(3d(3/2)2)] Ar(3d(5/2)3)] Ar(3d(7/2)4)] Ar(3$ Ar(3p5 4p J = 1 2p10) Ar(3p5 4p J = 1 2p2) Ar(3p5 4p J = 1 2p4) Ar(3p5 4p J = 1 2p7) Ar(3p5 4p J = 2 2p3) Ar(3p5 4p J = 2 2p3) Ar(3p5 4p J = 2 2p6) Ar(3p5 4p J = 2 2p8) Ar(3p5 4p J = 3 2p9) Ar(3p5 4s J = 0 1s3) Ar(3p5 4s J = 1 1s4) Ar(3p5 4s J = 2 1s5) Ar(3p5 4s j = 1 1s2) Ar(3p6 J = 0) Ar(4p'[1/2]0) Ar(4p'[1/2]1) Ar(4p'[3/2]1) Ar(4p'[3/2]2) Ar(4p[1/2]0) Ar(4p[1/2]1) Ar(4p[3/2]1) Ar(4p[3/2]2) Ar(4p[5/2]2) Ar(4p[5/2]3) Ar(4s'[1/2]0) Ar(4s'[1/2]1) Ar(4s[3/2]1) Ar(4s[3/2]2) Ar(5s'[1/2]0) Ar(5s'[1/2]1) Ar(5s[3/2]1) Ar(5s[3/2]2) Be(2p(2)1D2) Be(2p(2)3P2)|Be(2s_2p_1P)|Be(2s_2p_3P)|Be(2s_3d_1D)|Be(2s_3d_3D)|Be(2s_3p_1P)|Be(2s_3p_3P)|Be(2s_3s_1S)|Be(2s_3s_3S)|Be(2s_4d_1D)|Be(2s_4d_3D)|Be(2s_4f_1F)| Be(2s_4f_3F) Be(2s_4p_1P) Be(2s_4p_3P) Be(2s_4s_1S) Be(2s_4s_3S) BeH+ C2H2+ C(2p(2)_1D) C(2p(2)_1D2) C(2p(2)_1S) C(2p(2)_1S0) C(2p(2)_3P1) C(2p(2)_3P3) C(2p3d_1D0) C(2p3d_1D0 C(2p3d_1Fo) C(2p3d_1Po) C(2p3d_3Do) C(2p3d_3Fo) C(2p3d_3Fo) C(2p3p_1D) C(2p3p_1P) C(2p3p_1S) C(2p3p_3D) C(2p3p_3P) C(2p3p_3S) C(2p3s_1Po) C(2p3s_3Po) C(2p4s_1Po) C(2p4s 3P0) C(2p 3d 1D2) C(2p 3d 1F3) C(2p 3d 1P1) C(2p 3d 3D1) C(2p 3d 3D2) C(2p 3d 3D3) C(2p 3d 3F3) C(2p 3d 3F4) C(2p 3d 3P0) C(2p 3d 3P1) C(2p 3d 3P2) C(2p 3p 1D2) C(2p 3p 1P1) C(2p 3p 1S0) C(2p 3p 3D1) C(2p 3p 3D2) C(2p 3p 3D3) C(2p 3p 3P3) C(2p C(2p 3s 3P0) C(2p 3s 3P1) C(2p 3s 3P2) C(2p 4s 1P1) C(2p 4s 3P0) C(2p 4s 3P1) C(2p 4s 3P2) C(2s2p(3) 3D0) C(2s2p(3) 3P0) C(2s2p(3) 550) C(2s 2p(3) 3D1) C(2s 2p(3) 3D2) C(2s_2p(3)_3D3)]C(2s_2p(3)_3P0)]C(2s_2p(3)_3P1)]C(2s_2p(3)_3P2)]C(2s_2p(3)_5S2)]CH+|CO-rot[CO2+|CO2(bend mode)]CaF+|Cs*|D2(B,v=0)]D2(B,v=10)|D2(B,v=10)|D2(B,v=11)|D2(B,v=10)|D2 D2(B,v=13) D2(B,v=14) D2(B,v=15) D2(B,v=16) D2(B,v=17) D2(B,v=17) D2(B,v=19) D2(B,v=19) D2(B,v=2) D2(B,v=20) D2(B,v=21) D2(B,v=22) D2(B,v=23) D2(B,v=24) D D2(B,v=25) D2(B,v=26) D2(B,v=27) D2(B,v=28) D2(B,v=29) D2(B,v=3) D2(B,v=30) D2(B,v=31) D2(B,v=32) D2(B,v=33) D2(B,v=34) D2(B,v=35) D2(B,v=36) D2(B,v=37) D2(B,v=36) D2(B,v=37) D2(B,v=36) D D2(B,v=39) D2(B,v=4) D2(B,v=4) D2(B,v=41) D2(B,v=41) D2(B,v=42) D2(B,v=43) D2(B,v=44) D2(B,v=44) D2(B,v=45) D2(B,v=46) D2(B,v=47) D2(B,v=48) D2(B,v=49) D2(B,v=49) D2(B,v=46) D2 D2(B,v=6) D2(B,v=7) D2(B,v=8) D2(B,v=9) D2(X,v=0) D2(X,v=1) D2(X,v=10) D2(X,v=11) D2(X,v=12) D2(X,v=13) D2(X,v=14) D2(X,v=15) D2(X,v=16) D2(X,v=17) D2(X,v=18) D2(X,v=16) D2(X,v $D_2(X,v=19) D_2(X,v=20) D_2(X,v=20) D_2(X,v=3) D_2(X,v=4) D_2(X,v=5) D_2(X,v=6) D_2(X,v=7) D_2(X,v=8) D_2(X,v=9) D_2^+(1SSq,v=0) D_2^+(1SSq,v=1) D_2^+(1SSq,v=10) D_2^+(1SSq,v$ D2+(1sSg,v=12) D2+(1sSg,v=13) D2+(1sSg,v=2) D2+(1sSg,v=3) D2+(1sSg,v=4) D2+(1sSg,v=5) D2+(1sSg,v=6) D2+(1sSg,v=7) D2+(1sSg,v=7) D2+(1sSg,v=8) D2+(1sSg,v=9) D2+(1sSg,v=6) D2+(1sG,v=6) D2+(1sG,v=6) D2+(1sG,v=6) D2+(1sG,v=6) D2+(1sG,v=6) D2+(1sG,v=6) D2+(1sG,v=6) D2+(1sG,v=6) D2+(1sG, $DT^{+}(1sSg,v=0) DT^{+}(1sSg,v=1) DT^{+}(1sSg,v=10) DT^{+}(1sSg,v=11) DT^{+}(1sSg,v=12) DT^{+}(1sSg,v=12) DT^{+}(1sSg,v=13) DT^{+}(1sSg,v=14) DT^{+}(1sSg,$ DT+(1sSg,v=5) DT+(1sSg,v=6) DT+(1sSg,v=7) DT+(1sSg,v=8) DT+(1sSg,v=9) F(2p^4(^1D)3s) F(2p^4(^3P)3d) F(2p^4(^3P)3p) F(2p^4(^3P)3s) F(2p^4(^3P)4p) F(2p^4(^3P)4s) $F(2p^4(^{3p})5s)\|H(1S)\|H2+\|H2(+)\|H(2P)\|H(2S)\|H2+(1sSg,v=0)\|H2^+(1sSg,v=1)\|H2^+(1sSg,v=2)\|H2^+(1sSg,v=3)\|H2^+(1sSg,v=4)\|H2^+(1sSg,v=5)\|H2^+(1sSg,v=6)\|H2^+(1sSg,v=7)\|H2^+(1sSg,v=3)\|H2^+(1sSg,v=3)\|H2^+(1sSg,v=3)\|H2^+(1sSg,v=5)\|H2^+(1sSg,v=6)\|H2^+(1sSg,v=7)\|H2^+(1sSg,v=3)\|H2^+(1sSg,v=3)\|H2^+(1sSg,v=6)\|H2^+(1sSg,v=7)\|H2^+(1sSg,v=6)\|H2^+(1sSg,v=7)\|H2^+(1sSg,v=6)\|H2^+($

Recap: Identify problems

Data format & Semantics

Data storage

Platform design & implementation

Data format & Semantics

Nonstandard format

- Hard to parse
- Duplication

Lack of structured schema

- State notations
- Ambiguity

1	EXCITATION
2	$N2 \rightarrow N2 (v=0 - v=1)$
3	3.000000e-1
4	SPECIES: e / N2
5	PROCESS: E + N2 \rightarrow E + N2 (v=0 - v=1), Excitation
6	PARAM.: E = 0.3 eV, complete set
7	COMMENT: [e + N2(X,v=0) \leftrightarrow e + N2(X,v=1), Vibrational]
8	COMMENT: Pitchford L C and Phelps A V 1982
9	UPDATED: 2017-09-03 03:54:40
10	COLUMNS: Energy (eV) Cross section (m2)
11	
12	3.000000e-1 0.000000e+0
13	4.000000e-1 3.000000e-23
14	<omitted lines=""></omitted>
15	

$$\mathrm{e} + \mathrm{N}_2 \left(\mathrm{X},
u = 0
ight)
ightarrow \mathrm{e} + \mathrm{N}_2 \left(\mathrm{X},
u = 1
ight)$$

Ea

Data storage

Relational database

- SQL
- Table-based

Heterogeneous data

• e^- , Ar^* , $Ar(^1S_0)$

Particle	Charge	е	S	L	Parity	J
е	-1	NULL	NULL	NULL	NULL	NULL
Ar	0	*	NULL	NULL	NULL	NULL
Ar	0	NULL	0	0	Even	0

Platform

Intertwined

• Violates separation of concerns

Hard to

- Maintain
- Adapt

Universal language

- Captures physics
- Species notation
- Flexible

JSON

• JSON Schema

• Typescript to JSON Schema generator [4]

[4] https://github.com/vega/ts-json-schema-generator

Universal language

- Captures physics
- Species notation
- Flexible

Examples

 He^*

• JSON

- JSON Schema
- Typescript to JSON Schema generator [4]

[4] https://github.com/vega/ts-json-schema-generator

Universal language

- Captures physics
- Species notation
- Flexible

Examples

 ${
m He^+} \left({
m ^2S_{1/2}} \right)$

 He^*

"electronic": "*"

- JSON
- JSON Schema
- Typescript to JSON Schema generator [4]

[4] https://github.com/vega/ts-json-schema-generator

5

6

Universal language

- Captures physics
- Species notation
- Flexible

Examples

 ${
m He^+} \left({
m ^2S_{1/2}} \right)$

 He^*

"particle": "He", "charge": 0, "type": "Unspecified", 5

6

"electronic": "*"

"electronic": { "scheme": "LS", 6 "config": [], 7 "term": { 8 "S": 0.5, 9 "L": 0, 10 11 "P": 1, "J": 0.5 12 13 14

"particle": "He",

"type": "AtomLS",

"charge": 1,

ISON

JSON Schema

Typescript to JSON Schema generator [4]

LTP schema generator library

3

4

15

[4] https://github.com/vega/ts-json-schema-generator

Capturing important relations

• ArangoDB [5]

[5] https://github.com/arangodb/arangodb

Capturing important relations

• ArangoDB [5] [5] https://github.com/arangodb/arangodb

Web infrastructure

- TypeScript
- WebAssembly

[6] https://github.com/vercel/next.js

Outlook

LXCat

- Official release!
- Open-source

https://gitlab.com/LXCat-project/lxcat

Outlook

LXCat

- Official release!
- Open-source

Applications

- LisbOn KInetics Boltzmann solver (LoKI-B) [7]
- Magnum Potential Integrator (MagnumPI) [8]

https://gitlab.com/LXCat-project/lxcat

[7] Tejero-Del-Caz et al. (2019). The LisbOn KInetics Boltzmann solver. *Plasma Sources Science and Technology*, *28*(4). https://doi.org/10.1088/1361-6595/ab0537
 [8] https://gitlab.com/magnumpi/magnumpi

Outlook

LXCat

- Official release!
- Open-source

Applications

- LisbOn KInetics Boltzmann solver (LoKI-B) [7]
- Magnum Potential Integrator (MagnumPI) [8]

Chemistry

• Collaborations

Fetch He-JohnDoe-2023; Run simulation

https://gitlab.com/LXCat-project/lxcat

[7] Tejero-Del-Caz et al. (2019). The LisbOn KInetics Boltzmann solver. *Plasma Sources Science and Technology*, *28*(4). https://doi.org/10.1088/1361-6595/ab0537
 [8] https://gitlab.com/magnumpi/magnumpi

