
PlasmaFAIR
Embedding FAIRness in Plasma Science

Peter Hill, Liam Pattinson
University of York

Overview

● How open is plasma science?

● Improving software sustainability

● FAIRer simulation data

How open is plasma science?

● Other more sophisticated comparisons have been made
○ Schindler et al 2021, 2022

○ Federer et al 2018

● But either missing plasma science, or less popular plasma journals

● So, ArXiv:
○ very commonly used by plasma and similar fields

○ Enables comparing across multiple journals without worrying about how to get papers

○ Papers available from (free) cloud data dump

○ BUT: not everyone uses ArXiv, so possibly some bias?

○ ALSO: raw LaTeX not available, only PDFs (and PS), so OCR/text conversion required

● Full ArXiv archive way too big: multiple TBs

● Limit analysis to "physics" (general physics) and "q-bio" (quantitative biology)
○ physics includes: Atmospheric and Oceanic Physics; Atomic Physics; Biological Physics; Chemical

Physics; Computational Physics; Data Analysis, Statistics and Probability; Fluid Dynamics; History and

Philosophy of Physics; Physics Education; Plasma Physics

○ q-bio includes: Biomolecules; Cell Behavior; Genomics; Molecular Networks; Neurons and Cognition

● Total: 255,727 papers, 0.4 TB

Cross-community Comparison

Analysis method

● Regular expression based searching
○ Using software: "software|\bcodes?\b|numerical|simulation|\bscripts?\b"

○ Data/code availability statement: "available (?:up)?on (?:reasonable)? ?request|reasonable

request|(data|code) ?availability"

● Regex system far from perfect, required lots of tweaking on subset of data, looking at

context

● Plan to read through sample of papers to check reliability of regex searches

Physics vs Biology trends

Physics category comparisons 2021

Conclusions

● Sharing of data/code has increased over time across all communities, particularly in

the last two-three years

● Other communities share (relatively) a lot more

● Biology seems to benefit from domain-specific data repositories
○ => Expand existing efforts in plasma?

Usability and Sustainability Projects
● Why do people not share data/code? Stodden 2010 offers insights

● Most do want to
○ Unsurprising! People share results in papers, often in Open Access

● Most common reason:

○ The time and effort required to clean it up

● PlasmaFAIR: bring RSE resources to researchers to clean up code

● End goals:
○ improve sustainability of plasma research software ecosystem as a whole

○ introduce FAIR principles to researchers

● Lots of narrowly focused projects => direct interaction with more researchers

https://plasmafair.github.io

Case study 1: FORD
● Fortran documentation generator —

Doxygen/Sphinx for Fortran

● Generates HTML pages from in-source

comments (and markdown files)

● Original author no longer had time to

support project

● More than two years since last release

● Documentation an essential part of

sustainable software

● Fortran heavily used in plasma science

● First PlasmaFAIR project!

Case study 1: FORD
● Took over maintainership

● Reviewed ~30 outstanding PRs

● Merged bug fixes and new

features => new release

● Implemented modern Python

packaging best practices

● Added CI, unit tests, automated

packaging

● Now merged 54 PRs, fixed >30

bugs, added >100 tests, made 12

releases

Case study 2: Neasy-f
● Wrapper for NetCDF Fortran API

● Designed to make common patterns simple and enable piecewise use (i.e. plays nice

with the standard Fortran API)

● Makes use of NetCDF-4 features
○ Backed by HDF5: can enable compression (faster IO, smaller file size)

○ No need to separate defining and writing variables

● Removes need to keep variable handles around for program lifetime

● Built-in error checking (aborts if error detected)

● Handles some conventional attributes and metadata

● Fortran 2008 features to reduce interface explosion

● Used in GS2: enabled removal of net 1200 lines

Case study 2: Neasy-f
● Left: official NetCDF Fortran example; Right: rewritten with Neasy-f

● No need for user-written check subroutine

● Variable definition, conventional metadata, and write done in same call

call check(nf90_create("my_file.nc", &
 ior(nf90_clobber, nf90_netcdf4), ncid))

call check(nf90_def_dim(ncid, "x", NX, x_dimid))
call check(nf90_def_dim(ncid, "y", NY, y_dimid))

call check(nf90_def_var(ncid, "data", NF90_INT, &
 [y_dimid, x_dimid], varid)
call check(nf90_put_att(ncid, varid, "units", "Pa"))
call check(nf90_put_att(ncid, varid, &
 "long_name", "Synthetic pressure"))

call check(nf90_enddef(ncid))

call check(nf90_put_var(ncid, varid, data_out))

call check(nf90_close(ncid))

ncid = neasyf_open("my_file.nc", "w")

call neasyf_dim(ncid, "x", dim_size=NX)
call neasyf_dim(ncid, "y", dim_size=NY)

call neasyf_write(ncid, "data", data_out, ["y", "x"], &
 units="Pa", long_name="Synthetic pressure")

call neasyf_close(ncid)

Automatic Provenance Capturing
● Many tools exist for capturing provenance information

● But, either:
○ For dynamic languages (e.g. Python)

○ Requires use of workflow management tool

● Want something:
○ that works with C/C++/Fortran and MPI/HPC

○ simple to integrate with existing software

○ that requires little interaction from end user

● Use cases:
○ Finding simulations that match some parameters

○ Enabling machine learning

○ Easier, FAIRer archiving

Autoprov
● New tool, still in development, pre-alpha

● Two function calls: autoprov_init and autoprov_finish

● Implemented in C++ with C and Fortran APIs

● Automatic capturing of runtime information

● Automatic capturing of file IO metadata

● Output to metadata file and/or database

● MPI compatible

Autoprov

Autoprov

Software
metadata

Autoprov
options

Runtime
metadata

File IO
metadata

File
Database

Autoprov
#include <autoprov/autoprov.h>

int main(int argc, char* argv[]){
 AutoprovOpts opts = autoprov_default_opts();
 AutoprovMetadata metadata = {"test", "1.2.3"};
 autoprov_init(argc, argv, &opts, &metadata);
 /* do things */
 autoprov_finalize();
 return 0;
}

Conclusions
● Plasma community could share more

● PlasmaFAIR providing usability and sustainability projects

● https://plasmafair.github.io

● Autoprov: automatic provenance capturing

https://plasmafair.github.io

